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The penetration of electric and magnetic velocity fields through a conducting wall~with e51, m51) when
a nonrelativistic charged particle is traveling outside parallel to the wall is calculated for a good conductor in
a perturbation analysis through first order in the velocity ratiob5v/c. It is found that the magnetic field
behind the conducting wall is of a universal character depending only on the displacement of the field point
from the charged particle outside the wall; the field is modified by the presence of the conducting wall but is
independent of the conductivity, the thickness, or the relative placement of the wall. Within the conductor, the
magnetic field depends upon the thickness of the wall but not upon the conductivity of the wall. In front of the
conducting wall, the magnetic field is independent of the conductivity or the thickness of the wall. The electric
field inside and outside the conducting wall depends upon the conductivity and thickness of the wall. In the
region behind the wall, the electric field falls off asr23. The currents in the conducting wall are independent
of conductivity but depend upon the thickness of the wall. The electric field in front of the wall exerts a
dragging force on the passing charged particle, providing the energy balance for resistive heating in the wall.
This dragging force increases as the thickness of the wall decreases. The present general analysis extends
earlier work in the literature that treats the special cases of an infinitely thick conducting wall and of a thin
perfectly conducting wall. The ideas involved are unfamiliar to many physicists, who are not aware that
electromagnetic velocity fields have an algebraic behavior inside conductors, which is completely different
from the familiar exponential damping of electromagnetic wave fields. The ideas are of interest in connection
with the electromagnetic shielding of systems from electromagnetic fields of passing charges and in connection
with the Aharonov-Bohm effect where charged particles pass close to conducting solenoids.@S1063-
651X~96!08906-4#

PACS number~s!: 03.50.2z

I. INTRODUCTION

A. The problem

The exponentially-damped penetration of classical elec-
tromagnetic wave fields into conductors is a familiar subject
mentioned in all the electromagnetism textbooks. However,
only in recent years has it been realized that the penetration
of electromagnetic velocity fields is of an entirely different
character from that of electromagnetic wave fields@1–4#.
Whereas wave fields are exponentially damped in conduc-
tors, the velocity fields of charged particles have an algebraic
decrease with distance, the electric fields being sharply
screened by good conductors, whereas the magnetic fields
penetrate even in the limit of a perfect conductor. This new
understanding is now referred to in the textbook literature@5#
but still finds opponents@6#. Also, there is still some dis-
agreement in the literature@4#. The present calculation for
the case of a conducting wall of finite thickness represents a
generalization of some previously treated special cases and
corresponds to the situation relevant to experiment.

B. Context of the calculation

The existing research literature involves calculations for
the penetration of electromagnetic velocity fields in a num-
ber of specialized cases. The initial investigation@1# of 1974
uses a nonrelativistic perturbation analysis to treat the pen-
etration of fields into an infinitely thick conducting wall
when a charged particle moves outside parallel to the plane
surface of the conductor. Furry@2# uses a nonrelativistic per-

turbation for the case of a thin perfectly conducting wall.
Aguirregabiria, Hernandez, and Rivas@3# discuss the veloc-
ity fields inside a solid conducting sphere due to the radial
motion of a charged particle, again using a nonrelativistic
perturbation calculation.

The only nonperturbation analysis is that of Jones@4#,
who considers a line charge~in order to reduce the spatial
dimensions! moving perpendicular to its length and parallel
to the face of an infinitely thick conducting wall. Instead of a
perturbation in the velocity ratiov/c, he uses Fourier analy-
sis in time; he also allows the conductor to have values of
dielectric constante and relative permeabilitym that differ
from unity. Jones finds a skin effect when the velocity of the
line charge is so high as to be in the Cherenkov radiation
region where the charge is moving faster than the speed of
light in the medium, but he confirms an algebraic falloff of
the magnetic field with distance for lower velocities. How-
ever, he arrives at conclusions that are at variance with those
found by the perturbation analyses of Refs.@1–3#. Jones
finds the penetration results of Ref.@1# only as the zero-
velocity limit of his analysis and suggests that the magnetic
field in the conductor actually depends upon the inverse
square of the conductivity, giving no magnetic field inside
the conductor in the limit of perfect~infinite! conductivity.
This is in contrast to the results reported in Refs.@1–3#, and
those to be reported in the present manuscript, which claim
that the magnetic field is independent of the wall conductiv-
ity. It may be noteworthy that these results involving inde-
pendence of wall conductivity allow superposition to obtain
the steady current limit, which is an exact result of Max-

PHYSICAL REVIEW E JUNE 1996VOLUME 53, NUMBER 6

531063-651X/96/53~6!/6450~10!/$10.00 6450 © 1996 The American Physical Society



well’s equations; this limit indeed fits the known experimen-
tal situation where a magnetic velocity field from a steady
current penetrates a good conductor withm51 as though the
conductor were not present. Jones’s Eq.~10! does not give a
steady current result for the magnetic field that is indepen-
dent of conductivity. Also, Jones reports recovery of the ap-
propriate result of Ref.@1# only in the ‘‘zero-velocity’’ limit
holding other quantities fixed. The actual range of validity of
this limit is not suggested.

The original calculation@1# of 1974 was undertaken in
connection with possible explanations of the Aharonov-
Bohm effect. Experimentalists had accepted the idea that a
conduction layer surrounding the solenoid in the effect
would eliminate the electric and magnetic fields of the pass-
ing charge and so make untenable an explanation for the
effect based upon a classical electromagnetic interaction be-
tween the passing charge and the solenoid@6#. Indeed, so
poorly known is the velocity field penetration that this erro-
neous argument is repeated exactly in the 1985 review article
on the Aharonov-Bohm effect written by Olariu and Popescu
@7#.

The velocity field penetration problem is also of interest
in connection with experiments testing the weak equivalence
principle for antimatter@8#. Experiments with antiprotons,
negative hydrogen ions, positrons, and electrons under the
influence of the earth’s gravitational field involve charged
particles moving parallel to conducting surfaces. The drag-
ging forces on the external charges associated with Joule
heating by currents caused in the walls of the drift tubes must
be accounted for experimentally.

C. Present calculation

In the present calculation, we wish to generalize the dis-
cussion of Refs.@1,2#. We will give a nonrelativistic pertur-
bation analysis for a point charge moving parallel to a con-
ducting wall of finite thickness. In the limit of an infinitely
thick wall, the results of Ref.@1# are recovered, and in the
limit of a thin perfectly conducting wall, the results of Ref.
@2#. The situation of finite conductivity and finite wall thick-
ness is the natural one when trying to understand the appli-
cability of these ideas to experimental situations. It seems to
be of considerable interest that the magnetic velocity fields
penetrating a wall of good conductivity have a universal
character that is independent of the conductivity, thickness,
or detailed placement of the wall.

II. CALCULATION OF THE PENETRATION
OF THE VELOCITY FIELDS

OF A POINT CHARGE

A. Power series solution of Maxwell’s equations

The analysis here for a conducting wall of finite thickness
follows a pattern analogous to that used in Ref.@1#. We
expect to find a solution of Maxwell’s equations as a power
series in the velocity parameterb5v/c of the charged par-
ticle moving parallel to a uniform conducting wall.

The wall here has thicknessl , extending between the
planesz52 l andz50, while the chargee is located at the
positionjd5 ivt1kd a distanced from the wall. In the static
limit b50, there is a negative surface chargesz50

(0) on the

front surfacez50 next to the chargee; this surface charge
sz50
(0) gives rise to an electric field, which forz,0 exactly

cancels the electrostatic field of the point chargee. At low
velocities we expect small modifications of the electrostatic
situation; we expect new surface chargessz50

(1) , sz52 l
(1) of

first order in the parameterb on the front and back surfaces
of the conducting wall. These first-order corrections to the
surface charge give rise to first-order correctionsE(1) to the
electrostatic fields. The new fields in turn produce currents
J(1)5E(1)/h in the conducting wall of resistivelyh, which
then cause first-order magnetic fieldsB(1). For simplicity we
will take the conducting wall to have unit dielectric constant
e51 and relative permeabilitym51, the same as a vacuum.

It is natural to use the Coulomb gauge for the quasistatic
analysis envisioned here. Then the electrostatic potentialF
is given as an instantaneous integral over the charges

F~r ,t !5E r~r 8,t !

ur2r 8u
d3r 8, ~1!

and the vector potentialA is an integral over the transverse
current at the retarded time

A~r ,t !5
1

cE J'~r 8,t ret!

ur2r 8u
d3r 8. ~2!

Since the currentJ' is already first order in the velocity
parameterb, we can ignore the retardation when evaluating
the vector potentialA through first order inb.

A further simplification is possible because we are con-
sidering a configuration that moves with constant velocity
v5 iv in thex direction parallel to the wall surface. Thus all
functions take the formf (r ,t)5 f (x2vt,y,z) and therefore
all partial time derivatives can be converted to spatial deriva-
tives multiplied by a factor ofb,

]

]t
f ~r ,t !52cb

]

]x
f ~r ,t !. ~3!

But then in the Coulomb gauge through first order inb, the
vector potentialA, which is already first order inb, does not
enter the determination of the electric field,

E~r ,t !52“F2
1

c

]A

]t
>2“E r~r 8,t !

ur2r 8u
d3r 81O~b2!.

~4!

Also, for any gauge through first order inb,

B~r ,t !5“3A>“3
1

cE J~r 8,t !

ur2r 8u
d3r 81O~b2!. ~5!

Thus through orderb, the electric field can be evaluated
from electrostatic theory using the charge density through
orderb, and the magnetic field can be evaluated using the
Biot-Savart integral over the currents arising from these elec-
tric fields in the conducting wall, as well as from the charge
e.

B. Volume currents and surface charges

In the volume of the conductor, the continuity equation
for electric charge becomes
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05
]r

]t
1“•J5

]r

]t
1“•~E/h!5

]r

]t
1
4pr

h
, ~6!

so that charges in the volume of the conductor decrease ex-
ponentially in time. Hence no charge is expected in the vol-
ume of the conductor. On the other hand, the continuity
equation relates the surface charges to the normal component
of the currentJ in the conductor by

05
]

]t
sz502Jz~z502!52cb

]

]x
sz502

1

h
Ez~z502!

~7!

and

05
]

]t
sz52 l2Jz~z52 l1!

52cb
]

]x
sz52 l2

1

h
Ez~z52 l1!, ~8!

wherez502 andz52 l1 are just inside the surfaces of the
conductor atz50 andz52 l , respectively. Now the zero-
order terms inb correspond to the familiar electrostatic situ-
ation where there is a surface chargese on the front surface
of the conductor and none on the back,

sz50
~0! 5se~x,y;jx ,d!5

2ed

2p@~x2jx!
21y21d2#3/2

~9!

and

sz52 l
~0! 50. ~10!

Then from Eqs.~7! and ~9!, it follows that the electric field
just inside the front surface of the conductor atz502 is first
order inb,

Ez
~1!~z502!52chb

]

]x
sz50

~0! . ~11!

On the other hand, Eqs.~8! and~10! indicate that the electric
field just inside the back surface of the conductor must van-
ish through first order inb,

Ez
~1!~z52 l1!50. ~12!

C. Electric fields from image charges

The determination of the electric field inside the conduc-
tor through first order inb corresponds exactly to solving the
electrostatic problem¹2F50 in the region2 l,z,0 with
Neumann boundary conditions given by Eqs.~11! and ~12!.

It is natural to try to construct a Green function for this
problem by the repeated reflection of point charge images in
the two planes. This gives the formal solution@9# for the
electrostatic potential,

F~r !5
1

4pE F ]F

]z8
GN~r ,r 8!G

z850

ds8, ~13!

GN~r ,r 8!5 (
n52`

` S 1

ur2~r 81k2nl !u
1

1

ur2~Rr 81k2nl !u D ,
~14!

whereRr 85 ix81 jy82kz8 corresponds to the reflection of
r5 ix81 jy81kz8 in the planez50. Actually, the series in
~14! diverges. However, the electric fieldE52“F obtained
by differentiating term by term involves a convergent series
and is finite.

Although we will not use Eqs.~13! and~14! directly, the
technique of images that they suggest indeed allows a solu-
tion to our problem. We start by ignoring the surface at
z52 l , assuming it were infinitely far away. The zero-order
~electrostatic! solution corresponds to the surface charge
sz50
(0) of Eq. ~9!, which gives rise to electrostatic fields

E2e(r ,j6d), which appear to come from a charge2e lo-
cated at the pointj1d5 ijx1kd or j2d5 ijx2kd, which is a
distanced on the other side of the planez50 from the field
point r . The first-order electric field in~11! arises from the
first-order corrections to the surface charges. The surface
charge causes electric fields on either side of the wall, which
are related by reflection through the wall. Thus the electric
field E(1)(0)(r ,t) would arise solely from the surface charge
sz50
(1)(0). Here the upper zero is a notation that we will need

later and refers to the number of reflections through the plane
z52 l . Then from Gauss’s law and Eq.~11!,

sz50
~1!~0!5

1

4p
„Ez

~1!~0!~z501!2Ez
~1!~0!~z502!…

52
1

2p
Ez

~1!~0!~z502!5
chb

2p

]

]x
sz50

~0! , ~15!

since under reflection through the planez50, thez compo-
nent of the electric field arising from a surface charge
changes sign,

Ez
~1!~0!~z501!52Ez

~1!~0!~z502!. ~16!

The electric field associated with the surface chargesz50
(1)(0)

follows from Eqs.~4! and ~9!:

E~1!~0!~r ,t !5E Fsz50
~1!~0!~r2r 8!

ur2r 8u3 G
z850

dx8dy85
2chb

2p

]

]jx
E Fse~x8,y8;jx ,d!~r2r 8!

ur2r 8u3 G
z850

dx8dy8

5H chb

2p

]

]x
E2e~r ,jd!, z,0

chb

2p

]

]x
E2e~r ,j2d!, z.0,

~17!
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where we have replaced the derivative (]/]x)sz50
(0) by a de-

rivative 2(]/]jx)sz50
(0) with respect to thejx coordinate of

the positionjd5 ijx1kd of the point charge, and then have
taken the derivative outside the integral before switching
back to an integral with respect tox. The electric field
E2e(r ,j) is the static field of a point charge2e located at
j,

E2e~r ,j!52e
~r2j!

ur2ju3
, ~18!

where herejd5 ivt1kd and j2d5 ivt2kd. The derivative
]/]x in Eq. ~17! changes the character of the field over to a
dipole field. Thus the electric field in~17! for z,0 looks like
that of an electric dipole

p5 i
echb

2p
~19!

located at the position of the point charge, which is passing
the conducting wall. On the opposite side of the wall for
0,z, the field in~17! looks as though it were caused by the
same electric dipole but now located at the pointj2d found
by reflection through the planez50.

Although the fieldE(1)(0)(r ,t) serves as a solution for the
first-order electric field for the case of an infinitely thick wall
( l→`), it violates the conditionEz

(1)(z52 l1)50 of Eq.
~12! for the case of a wall of finite thickness. The condition
~12! can be achieved by introducing an image electric dipole
of the same magnitude ~19! at the position
j2d22l5 ivt1k(2d22l ) corresponding to the reflection of
the image dipole atjd through the planez52 l . From the
analogy with~15! this corresponds to a surface charge

sz52 l
~1!~1!5

chb

2p

]

]x
se~x,y;jx ,d1 l !, ~20!

wherese(x,y;jx ,d1 l ) is the static surface charge on the
plane due to a point chargee a distanced1 l away. This
surface charge gives rise to an electric field

E~1!~1!~r ,t !5H chb

2p

]

]x
E2e~r ,jd!, z,2 l ,

chb

2p

]

]x
E2e~r ,j2d22l !, 2 l,z.

~21!

Now the combined surface chargessz50
(1)(0) and sz52 l

(1)(1)

give rise to electric fields that satisfy the condition~12!.
However, now the boundary condition~11! is no longer valid
because of the surface charge~20! at z52 l giving rise to an
electric field at the surfacez50. The boundary condition
~11! can be reestablished by taking the image of the surface
charge~20! in the planez50, corresponding to a correction
surface chargesz50

(1)(2) on the planez50,

sz50
~1!~2!5

chb

2p

]

]x
se~x,y;jx ,d12l !. ~22!

This new surface charge gives rise to new electric fields. It is
clear that this repeated reflection through the two conducting

planes will involve an infinite number of iterations. The re-
sulting surface charge on the planez50 through first order
in b is

se,b,z505se~x,y;jx ,d!

1
chb

2p

]

]x S (
n50

`

se~x,y;jx ,d12nl !D ~23!

and on the planez52 l is

se,b z52 l5
chb

2p

]

]x S (
n50

`

se~x,y;jx ,d1@2n11# l !D .
~24!

The electric fields arising from these surface charges~23!
and ~24! and from the original point charge through first
order inb are

Ee,b~r ,t !5
chb

2p

]

]x H 2(n50

`

E2e~r ,jd12nl!J for z,2 l ,

~25!

Ee,b~r ,t !5
chb

2p

]

]x HE2e~r ,jd!1 (
n51

`

@E2e~r ,jd12nl!

1E2e~r ,j2d22nl!#J for 2 l,z,0, ~26!

Ee,b~r ,t !5Ee~r ,jd!1E2e~r ,j2d!1
chb

2p

]

]x HE2e~r ,j2d!

12(
n51

`

E2e~r ,j2d22nl!J for 0,z, ~27!

whereEe(r ,jd) is the electrostatic field of a point chargee
located atjd .

There are a series of checks we can make on our work.
First, we note that for the infinitely thick conducting wall
l→` the electric field expressionsE2e(r ,jd12nl) and
E2e(r ,j2d22nl) vanish so that we recover the results of Ref.
@1#, Eqs.~30!–~32!. Next if we calculated the discontinuity
in the normal components of the electric fields at the inter-
facez50 and2 l , we find the surface charge densities given
in ~23! and ~24!. Finally, the fields inside the conductor at
z502 and2 l1 meet the boundary conditions~11! and~12!.

D. Electric currents and the magnetic fields

The electric field inside the conducting wall gives rise to
currentsJc according to

J5E/h, ~28!

so that

Jc~r ,t !5
cb

2p

]

]x HE2e~r ,jd!1 (
n51

`

@E2e~r ,jd12nl!

1E2e~r ,j2d22nl!#J ~29!
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for 2 l,z,0. These currents are independent of the conduc-
tivity 1/h of the wall.

The magnetic fields for our situation arise from these cur-
rents in the wall together with the currentJe of the moving
point charge

Je~r ,t !5 iecbd3~r2jd!. ~30!

Thus the associated magnetic fields through first order inb
are those following from the Biot-Savart expression

Be,b~r ,t !>
1

cE @Je~r 8,t !1Jc~r 8,t !#3~r2r 8!

ur2r 8u3
d3r 8

5
eb i3~r2jd!

ur2jdu3

1
1

cE dx8E dy8E
z852 l

z850
dz8

Jc~r 8,t !3~r2r 8!

ur2r 8u3
.

~31!

E. Magnetic fields and Maxwell’s curl equations

Although it may be feasible to evaluate the integral in
~31! directly, it is also possible to find the magnetic field by
recognizing familiar solutions to Maxwell’s equations. Since
the integrations do not seem elementary, we will follow the
second route in a manner analogous to that followed in Ref.
@1#.

In the regionz,2 l behind the conducting wall, the curl
equation for the magnetic field gives

“3B5
4p

c
J1

1

c

]

]t
E>0. ~32!

This occurs since there are no currentsJ in this region of
empty space and since the term (1/c)]E/]t52b]E/]x
must be second order inb from Eq.~25!. It follows from Eq.
~32! that the magnetic field in this region is given to first
order inb by the gradient of a scalar function

Be,b52“f for z,2 l . ~33!

In the region2 l,z,0 inside the conducting wall, the
curl equation for the magnetic field receives a contribution
from the currents in~29!,

“3B5
4p

c
Jc1O~b2!

>
4p

c

cb

2p

]

]x HE2e~r ,jd!1 (
n51

`

@E2e~r ,jd12nl!

1E2e~r ,j2d22nl!#J . ~34!

Now we can satisfy this equation by writing

Be,b5b3H 2S Ee~r ,jd!1 (
n51

`

@Ee~r ,jd12nl!

1Ee~r ,j2d22nl!# D J 2“f, ~35!

since

“3~2b3Ee!52b“•Ee22b•“Ee52b
]

]x
E2e ;

~36!

we have“•Ee50 in the region when the source pointj is
outside the region.

Finally, in the region 0,z in front of the conducting wall,
the curl equation for the magnetic field takes the form

“3B5
4p

c
evd3~r2jd!1

1

c

]

]t
E

54pebd3~r2jd!2b
]

]x
~@Ee~r ,jd!

1E2e~r ,j2d!#1O~b2!. ~37!

This has the solution to first order inb,

Be,b~r ,t !5b3$Ee~r ,jd!1E2e~r ,j2d!%2“f. ~38!

Maxwell’s curl equation for the magnetic field is satisfied
in all of space by Eqs.~33!, ~35!, and~38!, except possibly at
the boundariesz50, z52 l . The equation holds for all space
if we can show that the tangential components ofB are con-
tinuous at the two boundaries. The function2“f has con-
tinuous tangential components, provided all the sources for
f are confined to the planesz50, z52 l . All the other
terms for the magnetic field in~33!, ~35!, and ~38! involve
expressions of the formb3E(r ,t). Sinceb5 ib, we need to
check only that thez components of the expressions
E(r ,t) are continuous across the boundaries. However, this
indeed holds from the relationship between the expressions
for B and the boundary condition~11! and ~12!. Thus thez
component in the curly brackets in~35!

H 2S Ee~r ,jd!1 (
n51

`

@Ee~r ,jd12nl!1Ee~r ,j2d22nl!# D J
~39!

vanishes atz52 l , whereas atz50 this bracketed expres-
sion has the samez component as 2Ee(r ,jd), which agrees
with the z component of the curly bracket in Eq.~38!,

$Ee~r ,jd!1E2e~r ,j2d!%. ~40!

F. Magnetic fields and Maxwell’s divergence equations

Since the Maxwell curl equation forB is satisfied in all
space through first order inb, we need only determine the
scalar functionf so as to satisfy Maxwell’s divergence
equation in order to arrive at a complete solution. The re-
quirement“•B50 in all space takes the form from~33!,
~35!, and~38!,
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“•~b3E2“f!50) ~41!

or
“

2f5“•~b3E !, ~42!

whereE is a sum of point charge electrostatic fields. How-
ever, away from the boundaries, the source term in Eq.~42!
becomes

“•~b3E !5E•~“3b!2b•~“3E !50, ~43!

sinceb is a constant and since“3E50 for an electrostatic
field. Therefore from Eq.~42!, we see thatf must satisfy
Laplace’s equation“2f50 except possibly at the bound-
ariesz50 andz5 l .

At these boundaries, Maxwell’s equation“•B50 be-
comes the condition that the normal component ofB is con-
tinuous. Thus from Eqs.~33!, ~35!, and ~38!, we require at
z50,

k•@b3$Ee~r ,jd!1E2e~r ,j2d!%2“f#z501
5k•Fb3H 2S Ee~r ,jd!1 (

n51

`

@Ee~r ,jd12nl!1Ee~r ,j2d22nl!# D J 2“fG
z502

,

~44!

and atz52 l ,

k•Fb3H 2S Ee~r ,jd!1 (
n51

`

@Ee~r ,jd12nl!1Ee~r ,j2d22nl!# D J 2¹fG
z52 l1

5k•@2“f#z52 l2
. ~45!

These expressions can be simplified by notingb5 ib and using

k•~b3E !5~k3b!•E5bEy . ~46!

Then we find that Eqs.~44! and ~45! become

2
]f

]zU
z501

1
]f

]zU
z502

5
2eby

@~x2jx!
21y21d2#3/2

1 (
n51

`
4eby

@~x2jx!
21y21~d12nl !2#3/2

~47!

and

2
]f

]zU
z52 l1

1
]f

]zU
z52 l2

5 (
n51

`
24eby

$~x2jx!
21y21~d1@2n21# l !2%3/2

. ~48!

The determination off is analogous to solving an electrostatic problem, with the surface chargess (47) ands (48) implied
by Eqs.~47! and ~48!. The function2“f is an integral over the surface charges

2“f~r ,t !5E dx8E dy8
s~47!@ i~x2x8!1 j ~y2y8!1kz#

@~x2x8!21~y2y8!21z2#3/2
1E dx8E dy8

s~48!@ i~x2x8!1 j ~y2y8!1k~z1 l !#

@~x2x8!21~y2y8!21~z2z8!2#3/2
. ~49!

Although it may be possible to carry out the integrals in~49! directly, it is also feasible@10# to solve for2“f by recognizing
the surface charges in~47! and~48! as being related to the images of certain line charges stretching to spatial infinity from the
image pointsijx1k@6(d12nl)# on either side of the planesz50 andz5 l .

The electric fieldEl(r ;jd ,1`) of a line chargel per unit length beginning atjd5 ijx1kd and running to spatial infinity
parallel to the1z axis is given by

1

l
El~r ;jd ,1`!5

@ i~x2jx!1 jy#~z2d!2k@~x2jx!
21y2#

@~x2jx!
21y2#@~x2jx!

21y21~z2d!2#1/2
1
i~x2jx!1 jy

~x2jx!
21y2

. ~50!

The electric fieldEl(r ;j2d ,2`) of a line chargel per unit length beginning atj2d5 ijx1k(2d) and running to spatial
infinity parallel to the2z axis is found by reversing the signs ofz andk in ~50!,

1

l
El~r ;j2d ,2`!5

2@ i~x2jx!1 jy#~z1d!1k@~x2jx!
21y2#

@~x2jx!
21y2#@~x2jx!

21y21~z1d!2#1/2
1
i~x2jx!1 jy

~x2jx!
21y2

. ~51!
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The electrostatic field

E5H 2
]

]y
El~r ;jd ,1`!, z,0

2
]

]y
El~r ;j2d ,2`!, 0,z

~52!

is generated by a surface charge

s5
1

4p
@Ez~z501!2Ez~z502!#

52
1

2p

ly

@~x2jx!
21y21d2#3/2

, ~53!

which is precisely of the form of the surface charge terms
appearing in Eqs.~47! and~48!. Accordingly, it is possible to
read off the magnetic field by relating the field functions of
the form~50! and~51! through the surface charge~53! to the
discontinuities~47! and ~48!.

G. Results for the magnetic fields

In the regionz,2 l behind the conducting wall, the mag-
netic field is

Be,b~r ,t !52eb
]

]y S 1l El~r ;jd ,1`!

12(
n51

`
1

l
El~r ;jd12nl ,1`!D

1eb
]

]y S 2(
n51

`
1

l
El~r ;jd1@2n22# l ,1`!D

5eb
]

]y S 1l El~r ;jd ,1`!D , z,2 l , ~54!

where the first term involving2eb comes from~47! and the
second involving1eb comes from~48!, and thex compo-
nent of j is understood asjx5vt. In the region2 l,z,0
inside the conducting wall, the magnetic field is

Be,b~r ,t !5b3H 2S Ee~r ,jd!1 (
n51

`

@Ee~r ,jd12nl!1Ee~r ,j2d22nl!# D J
2eb

]

]y S 1l El~r ;jd,1`!12(
n51

`
1

l
El~r ;jd12nl ,1`!D 1eb

]

]y S 2(
n51

`
1

l
El~r ;j2d22nl ,2`!D

5b3H 2S Ee~r ,jd!1 (
n51

`

@Ee~r ,jd12nl!1Ee~r ,j2d22nl!# D J 2eb
]

]y S 1l El~r ;jd ,1`!D
22eb (

n51

`
]

]y S 1l El~r ;jd12nl ,1`!2
1

l
El~r ;j2d22nl ,2`!D , 2 l,z,0 ~55!

where the expression has been rewritten to assure the convergence of the infinite series. In the region 0,z in front of the
conducting wall, the magnetic field is

Be,b~r ,t !5b3$Ee~r ,jd!1E2e~r ,j2d!%2eb
]

]y H 1l El~r ;j2d ,2`!12(
n51

`
1

l
El~r ;j2d22nl ,2`!J

1eb
]

]y H 2(n51

`
1

l
El~r ;j2d22nl ,2`!J

5b3$Ee~r ,jd!1E2e~r ,j2d!%2eb
]

]y H 1l El~r ;j2d ,2`!J , 0,z. ~56!

We can check our results~54!, ~55!, and ~56! for the mag-
netic field by verifying that they satisfy Maxwell’s equations
in all space. Also, in the limit in which the conducting wall
becomes infinitely thickl→`, the results go over to those of
Ref. @1#.

III. LIMIT OF A LINE CHARGE MOVING PARALLEL
TO ITS LENGTH

A. Limit of a steady current

By adding the point charge solutions obtained above, one
can obtain limiting configurations involving line charges and

steady currents where the results correspond to familiar ex-
perimental situations. For example, the case of a sequence of
charges moving one after the other suggests a steady current
whose magnetic field is known to penetrate through a good
conductor withm51 as though the conductor were not
present.

B. Electric fields of a moving line charge

A line charge moving parallel to its length can be ob-
tained by starting with a point charge atjd85 i(vt1x8)1kd
rather than atjd5 ivt1kd, replacing the chargee by ldx8
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wherel gives the charge per unit length, and then integrat-
ing in x8. From Eq. ~23!, the surface charge on the front
surface of the conductor becomes that appropriate for a line
chargel, while the first-order terms, which are odd inx, do
not contribute in the integral. Since on the back surface the
surface charge is entirely odd inx, the surface charge at
z52 l vanishes in this line charge limit.

Similarly, the electric field existing in the line charge limit
has no contribution from the terms odd inx. Thus from Eqs.

~25!, ~26!, and~27!, we see that the only electric fields aris-
ing in this case are from the static fields
Ee(r ,jd)1E2e(r ,j2d), so that we recover the static line
charge limit with no electric field inside or behind the con-
ductor.

C. Magnetic fields of a moving line charge

The magnetic field involves integrals of the following
forms. Terms arising from the curl equation involve

E
2`

`

dx8b3Ee~r ,jd8!5ebE
2`

`

dx8
2 j ~z2d!1ky

@~x2x8!21y21~z2d!2#3/2
5 F eb@2 j ~z2d!1ky#~x82x!

@y21~z2d!2#@~x2x8!21y21~z2d!2#1/2G
x852`

x85`

5
2eb@2 j ~z2d!1ky#

y21~z2d!2
. ~57!

Terms introduced from the divergence equation involve

E
2`

`

dx8
]

]y S 1l El~r ;jd8 ,1`! D5E
2`

`

dx8H ky

@~x2x8!21y21~z2d!2#3/2
2

2i~x2x8!y

@~x2x8!21y2#2

2
i~x2x8!y~z2d!@3~x2x8!213y212~z2d!2#

@~x2x8!21y2#2@~x2x8!21y21~z2d!2#3/2

2
j ~z2d!@2~x2x8!21y2#

@~x2x8!21y2#2@~x2x8!21y21~z1d!2#1/2

2
jy2~z2d!

@~x2x8!21y2#@~x2x8!21y21~z2d!2#3/2
1
j @~x2x8!22y2#

@~x2x8!21y2#2 J . ~58!

The terms in~58! odd in x2x8 all vanish by symmetry leaving

E
2`

` ]

]y S 1l El~r ;jd8
,1`! Ddx85H ky~x82x!

@y21~z1d!2#@~x2x8!21y21~z2d!2#1/2
2

j ~z2d!~x82x!

@~x2x8!21y2#@~x2x8!21y21~z2d!2#1/2

2
j ~z2d!~x82x!

@y21~z2d!2#@~x2x8!21y21~z2d!2#1/2
2

j ~x82x!

~x2x8!21y2 J
x852`

x85`

5
22j ~z2d!12ky

y21~z2d!2
. ~59!

Similarly, the integral

E
2`

` ]

]y S 1l ElS r ;j2d8 ,2`dx85
2j ~z1d!22ky

y21~z1d!2
~60!

is related to~59! by reversing the signs ofz andk.
Then in each of the regions, we find the magnetic field integral

E
2`

`

ldx8
1

e
Be,b~r ,t !5

2lv
c

2 j ~z2d!1ky

y21~z2d!2
, ~61!

which is precisely the magnetic field of a steady currentI5lv of a line chargel moving along its length with velocity
v5 iv. In the case of the regionz,2 l behind the conducting wall whereBe,b is given by~54!, the integral involves~59!. In
the case of the region 0,z in front of the conducting wall whereBe,b is given by~55!, the integral involves a cancellation
between
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E
2`

`

dx8b3Ee~r ,j2d8 !

and

E
2`

`

dx8S 2eb
]

]y H 1l El~r ;j2d8 ,2`!J D ,
leaving the integral of the form~57!. In the region2 l,z,0 inside the conducting wall whereBe,b is given by~56!, there is
a similar cancellation of integrals:

E
2`

`

dx8b32Ee~r ,jd12nl8 ! cancels withE
2`

`

dx8eb
]

]y S 21l El~r ;jd12nl8 ,1`! D ,
E

2`

`

dx8b32Ee~r ,j2d22nl8 ! cancels withE
2`

`

dx8~2eb!
]

]y S 21l El~r ;j2d22nl8 ,2`! D ,
and

E
2`

`

dx8b32Ee~r ,jd8! is half canceled byE
2`

`

dx8~2eb!
]

]y S 1l El~r ;jd8 ,1`! D ,

leaving exactly the required result~61!. Thus, in the limit of
a steady current, we recover the familiarly observed result
that the magnetic field penetrates through a conducting wall
as though the wall were not present.

IV. DISCUSSION OF RESULTS

A. Retarding force on the passing charge

The charge passing the conducting wall gives rise to elec-
tric currents inside the wall. These dissipate energy in Joule
heating. In order to satisfy the ideas of energy conservation
contained in Maxwell’s equations, there must be an electric
retarding force on the passing charge. Indeed, the electric
fields associated with the changes in surface charges beyond
the electrostatic situation provide the required electric force.

The electric field acting on the passing charge removes
energy from the charge, which must be associated with a loss
of particle kinetic energy or with energy provided by an ex-
ternal force on the particle. The power of the electric field on
the charged particle follows from Eq.~27! as

Pem5Fem•v5cb•eEe,b~jd ,t !

5ceb
chb

2p

]

]x HE2e~r ,j2d!

12(
n51

`

E2e~r ,j2d22nl!J
r5jd

52
hc2e2b2

2p F 1

@2d#3
12(

n51

`
1

@2d12nl#3G . ~62!

Indeed, the electric field is removing energy from the passing
charge. We note here that for fixedh and b, the smallest
retarding force occurs for an infinitely thick conducting wall
wherel→`. As l decreases, the perturbation approximation
puts a limitation on how smalll can be.

B. The approximations

The solution for Maxwell’s equations given here is not
exact but rather is a perturbation approximation. The terms
retained in Maxwell’s equations correspond to a power-
series expansion in the velocity ratiob5v/c for the passing
point charge. Thus we require the low-velocity condition

ubu!1. ~63!

Next we regarded the surface charge corrections (1) as
small compared to the electrostatic surface charges (0),

us~1!u!us~0!u. ~64!

Comparing the expressions in Eqs.~9! and~15!, we see that
this condition will be satisfied, provided

chb

d
!1. ~65!

This condition can always be achieved for fixedh and d,
provided the particle velocity is made sufficiently small.

On the other hand, we may also regard this as a small-
distance limit on the separationd of the point charge from
the conducting wall whenb is set equal to 1. Since for good
conducting metals the resistivityh is of the order of
231028 ohm-meters, which corresponds@11# to 2

9310217

sec in Gaussian units, the valuech becomes2331027 cm, so
thatd is limited by atomic dimensions.

Finally, the correction to the surface charge involves a
sum over the images, so that we must require

Uchb

2p

]

]x S (
n50

`

se~x,y;jd12nl!DU!use~x,y;jd!u. ~66!

Thus, in addition to the condition~65!, we must require that
l be not much smaller than the limit ond. However, again
atomic dimensions are involved for good metallic conduc-
tors.
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C. Discussion of results for velocity fields

Our calculations show some results that are natural exten-
sions of the conclusions found in Refs.@1–3#, and some that
seem surprising. The algebraic rather than exponential falloff
of the electric and magnetic velocity fields inside and outside
the conducting wall is consistent with earlier work. Thus the
velocity fields penetrate even good conductors to an extent
that is not anticipated by those looking to a skin-depth ap-
proximation.

Inside the conducting wall, the electric and magnetic
fields depend upon the thickness of the wall. The magnetic
field and the volume currents inside the wall are independent
of the conductivity of the wall.

Noteworthy in the results is the fact that the magnetic

field on the far side of a conducting wall is independent of
the conductivity of the conducting wall, is independent of the
thickness of the wall, and is independent of the placement of
the wall. Furry@2# noted earlier that the penetrating magnetic
field was independent of the relative placement of the wall
for the special case of a thin perfectly conducting wall. Only
the distance from the passing charge determines the character
of the magnetic field once any intervening plane conducting
wall is present. One notes that the magnetic velocity field
beyond the conductor is not the same as that for a point
charge in vacuum. The conducting wall does modify the
magnetic field, but the modification is of a universal charac-
ter independent of the conductivity, thickness, and placement
of the wall, provided all the approximations~63!–~66! are
valid.
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